爱看小说
会员书架
爱看小说 >都市娱乐 >时间简史 > 第18章 宇宙的起源和命运(1)

第18章 宇宙的起源和命运(1)

上一章 章节目录 加入书签 下一章

(1)为何初期宇宙如此之热?

一种能够的答复是,上帝挑选宇宙的这类初始布局是因为某些我们有望了解的启事。这必定是在一个全能造物主的力量以内。但是如果他使宇宙以这类不能了解的体例开端,他为何又挑选让它遵循我们可了解的定律去演变?

为了解释我和其别人关于量子力学如何影响宇宙的发源和运气的思惟,必须起首遵循所谓的“热大爆炸模型”

如许,直到明天它们应当仍然存在。如果我们能观察到它们,就会为非常热的初期宇宙阶段的图象供应一个很好的查验。可惜现在它们的能量太低了,使得我们不能直接察看到。但是,如果中微子不是零质量,而是像近年的一些尝试表示的,本身具有小的质量,我们则能够直接地探测到它们:正如前面提到的那样,它们可以是“暗物质”

人们不能预言从奇点会出来甚么。正如之前解释的,这表白我们能够从这实际中割撤除大爆炸奇点和任何先于它的事件,因为它们对我们没有任何观察效应。时空会有一个鸿沟――大爆炸处的开端。

这有点像问很多门生一个测验题。如果统统人都给出完整不异的答复,你就会相称必定,他们相互之间交换过。在上述的模型中,从大爆炸开端光还没有来得及从一个悠远的地区达到另一个地区,即便这两个地区在宇宙的初期靠得很近。遵拍照对论,如果连光都不能从一个地区达到另一个地区,则没有任何其他的信息能做到。以是,除非因为某种不能解释的启事,导致初期宇宙中分歧的地区刚好从一样的温度开端,不然没有一种体例能使它们达到相互一样的温度。

地球本来是非常热的,并且没有大气。在时候的长河中它冷却下来,并从岩石中披发气体获得了大气。我们没法在这起初的大气中存活。因为它不包含氧气,反而包含很多对我们有毒的气体,如硫化氢(便是使臭鸡蛋难闻的气体)。但是,存在其他能在这类前提下繁衍的原始的生命情势。人们以为,它们能够是作为原子的偶尔连络,构成叫做宏观分子的大布局的成果,而在陆地中生长,这类布局能够将陆地中的其他原子堆积成近似的布局。它们就如许复制本身并滋长。在有些环境下复制有些偏差。这些偏差凡是使新的宏观分子不能复制本身,并终究被毁灭。

(2)为何宇宙在大标准上如此均匀?为何它在空间的统统点上和统统方向上看起来不异?特别是,当我们朝分歧方向看时,为何微波辐射背景的温度几近完整不异?

整部科学史恰是对事件不是以肆意体例产生,而是反应了必然内涵次序的慢慢的认识。这次序可以是,也能够不是由神灵启迪的。只要假定这类次序不但利用于定律,并且利用于时空鸿沟处的前提时才是天然的,这类前提指明宇宙的初始态。能够有大量具有分歧初始前提的宇宙模型,它们都从命定律。应当存在某种原则去抽取一个初始状况,也就是一个模型,去代表我们的宇宙。

宇宙从非常热的状况开端并随收缩而冷却的气象,和我们明天统统的观察证据相分歧。固然如此,它还留下很多未被答复的首要题目:

广义相对论本身不能解释这些特性或答复这些题目,因为它预言,宇宙是从在大爆炸奇点处的无穷密度肇端的。广义相对论和统统其他物理定律在奇点处都见效了:

我在全部70年代首要研讨黑洞,但在1981年插手在梵蒂冈由耶稣会构造的宇宙学集会时,我对于宇宙的发源和运气题目的兴趣被重新唤起。当上帝教会试图对科学的题目发号施令,并宣布太阳环绕着地球活动时,对伽利略犯下了严峻的弊端。几个世纪后的现在,它决定聘请一些专家做宇宙学题目的参谋。在集会的序幕,教皇访问统统与会者。他奉告我们,在大爆炸以后的宇宙演变是能够研讨的,但是我们不该该去过问大爆炸本身,因为那是创生的时候,因此只能是上帝的事件。我心中窃喜,看来他并不晓得,我刚在集会上作过的演讲的主题――时空有限而无界的能够性,这意味着它没有开端、没有创生的时候。

科学仿佛揭露了一族定律,在不肯定性道理设下的极限内,如果我们晓得宇宙在任一时候的状况,这些定律就会奉告我们,它如何随时候生长。这些定律或许本来是由上帝公布的,但是看来从那今后他就让宇宙本身遵循这些定律去演变,而现在不对它干与。但是,他是如何挑选宇宙的初始状况和布局的呢?甚么是在时候肇端处的“鸿沟前提”?

1948年,科学家乔治・伽莫夫和他的门生拉夫・阿尔法在一篇闻名的合作的论文中,第一次提出了宇宙的热的初期阶段的图象。伽莫夫非常诙谐――他压服了核物理学家汉斯・贝特将他的名字加到这论文上面,使得列名作者为“阿尔法、贝特、伽莫夫”,正如最前面三个希腊字母:阿尔法、贝他、伽马:这特别合适于一篇关于宇宙开初的论文!他们在此论文中作出了一个惊人的预言:宇宙的热的初期阶段的辐射(以光子的情势)明天还应当在四周存在,但是其温度已被降落到只比绝对零度(-273℃)高几度。这恰是彭齐亚斯和威尔逊在1965年发明的辐射。在阿尔法、贝特和伽莫夫写此论文时,对于质子和中子的核反应体味得未几,以是对于初期宇宙分歧元素比例所作的预言相称不精确;但是,在用更好的知识重新停止这些计算以后,现在的成果已和我们的观察合适得非常好。何况,在解释宇宙为何应当有这么多氦时,用任何其他体例都是非常困难的。以是,我们相称确信,起码一向回溯到大爆炸后约莫1秒钟为止,这个图象是精确无误的。

的一种情势,具有充足的引力吸引去遏止宇宙的收缩,并使之重新坍缩。

从爱因斯坦广义相对论本身就能预言:时空在大爆炸奇点处开端,并会在大挤压奇点处(如果全部宇宙坍缩的话)或在黑洞中的一个奇点处(如果一个部分地区,比方恒星坍缩的话)结束。任何落进黑洞的东西都会在奇点处毁灭,在内里只能持续感遭到它的质量的引力效应。另一方面,当考虑量子效应时,物体的质量和能量仿佛会终究回到宇宙的其他部分,黑洞和在它当中的任何奇点会一道蒸发掉并终究消逝。量子力学对大爆炸和大挤压奇点也能有划一戏剧性的效应吗?在宇宙的极早或极晚期,当引力场如此之强,量子效应不能不考虑时,究竟会产生甚么?宇宙究竟是否有一个开端或闭幕?如果有的话,它们是甚么模样的?

来了解被遍及接管的宇宙汗青。这是假定从早到大爆炸时候起宇宙便可用弗里德曼模型来描述。在此模型中,人们发明当宇宙收缩时,此中的任何物体或辐射都变得更凉(当宇宙的标准大到2倍,它的温度就降落到一半。)因为温度便是粒子的均匀能量――或速率的测度,宇宙的变凉对于此中的物质就会有较大的效应。在非常高的温度下,粒子能够活动得如此之快,能够逃脱任何由核力或电磁力将它们吸引在一起的感化。但是能够预感到,跟着它们冷却下来,粒子相互吸引并且开端结块。更有甚者,连存在于宇宙中的粒子种类也依靠于温度。在充足高的温度下,粒子的能量是如此之高,只要它们碰撞就会产生很多分歧的粒子/反粒子对一一并且,固然此中一些粒子打到反粒子上去时会泯没,但是它们产生得比泯没得更快。但是,在更低的温度下,碰撞粒子具有较小的能量,粒子/反粒子对产生得不快――而泯没则变得比产生更快。

(3)为何宇宙以这么靠近于辨别坍缩和永久收缩模型的临界收缩率开端,如许即便在100亿年今后的现在,它仍然几近以临界的速率收缩?如果在大爆炸后的1秒钟那一时候其收缩率哪怕小十亿亿分之一,那么在它达到明天这么大的标准之前宇宙早已坍缩。

所谓的浑沌鸿沟前提便是如许一种能够性。这些前提含蓄地假定,要么宇宙是空间无穷的,要么存在无穷多宇宙。在浑沌鸿沟前提下,在方才大爆炸以后,寻求任何空间地区在肆意给定的布局的概率,在某种意义上,和它在任何其他布局的概率是一样的:宇宙初始态的挑选纯粹是随机的。这意味着,初期宇宙能够是非常浑沌和无序的。

在大爆炸后的约莫100秒,温度降到了10亿度,也即最热的恒星内部的温度。在此温度下,质子和中子不再有充足的能量逃脱强核力的吸引,以是开端连络产生氘(重氢)的原子核。氘核包含一个质子和一其中子。然后,氘核和更多的质子、中子相连络构成氦核,它包含两个质子和两其中子,还产生了少量的两种更重的元素锂和铍。能够计算出,在热大爆炸模型中约莫1/4的质子和中子变成了氦核,另有少量的重氢和其他元素。余下的中子会衰变成质子,这恰是凡是氢原子的核。

因为与光滑和有序的宇宙比拟,存在着多很多的浑沌和无序的宇宙。(如果每一布局都是等概率的,因为浑沌无序态多得这么多,宇宙多数会从这类态肇端)。很难了解,从如许浑沌的初始前提,如何导致明天我们这个在大标准上如此光滑和法则的宇宙。人们还预感,在如许的模型中,密度起伏导致比伽马射线背景观察设定的上限多很多的太初黑洞的构成。

(4)固然宇宙在大标准上是如此的分歧和均匀,它却包含有部分的无规性,诸如恒星和星系。人们以为,这些是从初期宇宙中分歧地区之间密度的藐小不同生长而来的。这些密度起伏的发源是甚么?

但是,一些偏差会产生出新的宏观分子,它们会更有效地复制本身。是以它们具有上风,并趋势于代替本来的宏观分子。退化的过程就是用这类体例开端,并导致越来越庞大的自我复制构造的产生。第一种原始的生命情势消化了包含硫化氢在内的分歧物质,而开释出氧气。这就逐步地将大气窜改成明天如许的成分,并且答应诸如鱼、匍匐植物、哺乳植物以及最先人类等生命的更高情势的生长。

就在大爆炸时,宇宙体积被以为是零,所以是无穷热。但是,辐射的温度跟着宇宙的收缩而降落。大爆炸后的1秒钟,温度降落到约为100亿度,这约莫是太阳中间温度的1000倍,亦即氢弹爆炸达到的温度。现在宇宙首要包含光子、电子和中微子(极轻的粒子,它只受弱力和引力的感化)和它们的反粒子,另有一些质子和中子。跟着宇宙的持续收缩,温度持续降落,电子/反电子对在碰撞中的产生率就落到它们的泯没率之下。如许,大多数电子和反电子相互泯没掉了,产生出更多的光子,只剩下很少的电子。但是,中微子和反中微子并没有相互泯没掉,因为这些粒子和它们本身以及其他粒子的感化非常微小。

我不想去分享伽利略的厄运。我对伽利略之以是有一种激烈的认同感,其部分启事是我刚好出世于他身后的300年!

大爆炸后的几个钟头以内,氦和其他元素的产生就停止了。以后的100万年摆布,宇宙仅仅是持续收缩,没有产生甚么事。最后,一旦温度降落到几千度,电子和核子不再有充足能量去克服它们之间的电磁吸引力,就开端连络构成原子。宇宙作为团体,持续收缩变冷,但在一个比均匀略微麋集些的地区,收缩就会因为分外的引力吸引而迟缓下来。在一些地区收缩终究会停止并开端坍缩。当它们坍缩时,在这些地区外的物体的引力拉力使它们开端很慢地扭转;当坍缩的地区变得更小,它会自转得更快――正如在冰上自转的滑冰者,缩回击臂时会自转得更快。终究,当地区变得充足小,它自转得快到足以均衡引力的吸引,碟状的扭转星系就以这类体例出世了。别的一些地区刚好没有获得扭转,就构成了叫做椭圆星系的椭球状物体。这些地区之以是停止坍缩,是因为星系的个别部分稳定地环绕着它的中间公转,但星系团体并没有扭转。

跟着时候流逝,星系中的氢和氦气体被豆割成更小的星云,它们在本身引力下坍缩。当它们收缩时,此中的原子相互碰撞,气体温度降低,直到最后,热得足以开端热聚变反应。这些反应将更多的氢窜改成氦,开释出的热增加了压力,是以使星云不再持续收缩。它们会稳定地在这类状况下,作为像太阳一样的恒星逗留一段很长的时候,它们将氢燃烧成氦,并将获得的能量以热和光的情势辐射出来。质量更大的恒星需求变得更热,以均衡它们更强的引力吸引,使得其核聚变反应停止得极快,乃至于它们在1亿年这么短的时候里将氢耗光。然后,它们会略微收缩一点,而跟着它们进一步变热,就开端将氦窜改成像碳和氧如许更重的元素。但是,这一过程没有开释出太多的能量,以是正如在黑洞那一章描述的,危急就会产生了。人们不完整清楚下一步还会产生甚么,但是看来恒星的中间地区很能够坍缩成一个非常致密的状况,比方中子星或黑洞。恒星的内部地区偶然会在称为超新星的庞大发作中吹出来,这类发作使星系中的统统恒星在相形之下显得暗淡无光。恒星靠近生命起点时产生的一些重元素就被抛回到星系里的气体中去,为下一代恒星供应一些质料。因为我们的太阳是第二代或第三代恒星,是约莫50亿年前由包含有更早超新星碎片的扭转气体云构成的,以是约莫包含2%如许的重元素。云里的大部分气体构成了太阳或者喷到内里去,但是少量的重元素堆积在一起,构成了像地球如许的,现在作为行星环绕太阳公转的物体。

上一章 章节目录 加入书签 下一章